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ABSTRACT

This report describes algorithms that make optimal use of polarimetric
radar information to detect and classify targets in a ground clutter background.
The optimal polarimetric detector (OPD) is derived; this algorithm processes the
complete polarization scattering matrix (PSM) and provides the best possible
detection performance from polarimetric radar data. Also derived is the best
linear polarimetric detector, the polarimetric matched filter (PMF); the structure
of this detector is shown to be related to simple polarimetric target types.
Finally, the polarimetric whitening filter (PWF) is derived; this constant false
alarmn rate (CFAR) detector provides a simple alternative to the OPD for
detecting targets in clutter. New K-distributed polarimetric target and clutter
models are described; these models are used to predict the performance of the
OPD, the PMF, and the PWF. The performance of these three algorithms is
compared with that of simpler detectors that use only amplitude information to
detect targets. The ability to classify target types by exploiting differences in
polarimetric scattering properties is also discussed. -'
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EXECUTIVE SUMMARY

Under DARPA sponsorship, M.I.T. Lincoln Laboratory is conducting a
broad-based research effort to (1) develop an understanding of the
phenomenology of polarimetric radar data and (2) relate this phenomenology to
the performance achievable by target detection and classification algorithms
that use polarimetric radar data. In order to develop the mathematical
framework from which optimal polarimetric detectors and classifiers can be
derived, a clear understanding of polarimetnc radar returns is necessary. This
understanding is also necessary for predicting and analyzing the performance
of various polarimetric detectors and classifiers. This, in turn, will allow the
development of viable stationary-target detection and classification systems.
Such systems have application in surveillance, fire control, and target-seeker
systems. This report summarizes some of the recent work in the area of
stationary target detection and classification using polarimetric radar
information.

To investigate the detection and classification performance improvement
achievable through the use of fully polarimetric radar data, statistical models of
targets and clutter were first developed based on available polarimetric target
and clutter data. From these models, new algorithms were derived for optimal
processing of the polarimetric radar data. These new algorithms--the optimal
polarimetric detector (OPD), the polarimetric matched filter (PMF) and the
polarimetric whitening filter (PWF)--were compared with a variety of non-
polarimetric algorithms (i.e., algorithms that use only single-polarimetric-
channel returns to detect targets). Also, detection performance for radars using
circularly polarized data was investigated.

Based on a limited polarimetric clutter data base and a target data base
of turntable measurements, our performance predictions suggest that the target
detection performance achievable using the OPD or the PMF is not significantly
better than that achievable using simpler, single-polarimetric-channel radar
detectors. Furthermore, to implement the OPD or PMF requires prior knowledge
of the target and clutter polarization covariances; this would be impractical,
since clutter covariances vary widely and are highly unpredictable. Therefore,
we developed a more practical algorithm (the adaptive polarimetric whitening
filter, or APWF), which estimates the clutter covariance from the local clutter
statistics.

Although polarization information may not improve detection
performance significantly, it may be useful in target classification. Some target
types have distinctive polarimetric scattering properties. Preliminary studies
using an optimal polarimetric classifier suggest that these polarimetric
properties could be exploited to discriminate among target types (e.g., armored
targets vs. trucks).



It is again emphasized that the clutter data base which the results of this
report are based on is very limited; a more comprehensive set of measurements
of various clutter types (e.g., snow-covered terrain) must be obtained and ana-
lyzed. In the very near future we plan to collect this comprehensive clutter data
base using the Advanced Detection Technology Sensor (ADTS), and to verify
the tentative conclusions of this report using the new data base. The mathema-
tical framework necessary to perform these future studies is provided in this
report, along with the new polarimetric detection and classification algorithms
for optimally processing the fully polarimetric radar data.
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1.0 INTRODUCTION

The detection of stationary targets in ground clutter is an important
problem for both strategic and tactical applications. In an earlier program, the
Hostile Weapons Location System (HOWLS) Program [1,2], M.I.T. Lincoln
Lab'ratory investigated the detection performance that could be achieved using
"a single-polarimetric-channel radar with a resolution on the order of the size of
"a typical target (10 m by 10 m). The radar employed pulse-to-pulse frequency
diversity; this was used to obtain independent samples of targets and clutter
which could then be noncoherently integrated. Statistical target and clutter
models based on analysis of the collected radar data were developed. These
models were used to develop performance predictions for various non-
polarimetric detection algorithms. These predictions were found to agree
reasonabl-v well with the actual performance achieved by the algorithms.

Could HOWLS detection performance have been improved if the radar
had been fully polarimetric, and if the full polarization scattenng matrix (PSM)
had been used in the detection algorithms? This report addresses that
question.

To measure the full PSM, a radar must transmit two orthogonal
polarizations a.ý each frequency. In this report we assume that horizontal
polarization is transmitted first and two linear orthogonal polarizations (denoted
HH and HV) are received. Next, vertical polarization is transmitted and two
linear orthogonal polarizations (denoted VV and VH) are received. By
reciprocity VH = HV; therefore the three complex elements HH, HV, and VV
comprise all the information contained in the polarization scattering matrix. For
multi-look algorithms, successive independent PSM measurements are
obtained using frequency diversity.

In order to investigate the possible contribution to detection from the fully
polarimetric data, we extended the HOWLS target and clutter statistical models
to the fully polarmetric case. Then we developed detection algorithms which
use fully polarimetric information. Finally we developed formulas for predicting
the performance of these algorithms, and used these formulas to evaluate and
compare the various detection algorithms.

In Section 2 we introduce the basic polarimetric measurement model and
develop homogeneous statistical models of targets and clutter. *These statistical



models are used to predict the performance of various polarimetric and non-
polarimetric detection algorithms.

In Section 3 we use these homogeneous target and clutter models to
derive the optimal polarimetric detector (OPD). This algorithm reveals the
structure of the detector which yields the best performance under ideal
conditions; that is, it provides an upper bound on detection performance for the
homogeneous case.

Section 4 develops a new detection algorithm, the polarimetric matched
filter (PMF). This is a linear processor that processes the complex polarimetric
returns (HH, HV, and VV) so as to provide maximum target-to-clutter ratio to the
detector. A useful interpretation of the solution of the PMF is shown to
correspond to simple dihedral and trihedral reflector types.

Several alternative, suboptimal detection algorithms are presented in
Section 5. These algorithms are suboptimal because they ignore some of the
polarimetric information; they are, however, independent of the polarimetric
parameters of the target and clutter whereas the OPD and the PMF require
exact knowledge of the target and clutter covariances. The algorithms
considered include the polarimetric span and various single-polarimetric-
channel detectors.

Section 6 develops more realistic target and clutter models. In this sec-
tion it is assumed that clutter is spatially nonhomogeneous and that target
returns vary with aspect angle. Random polarimetric target and clutter models
having a product-model structure are post- ':ted; such models are consistent
with these more realistic assumptions. The exact prr''ability density function
(PDF) for both product-model targets and clutter is derived; this PDF is used to
obtain the optimal-likelihood-ratio detector for product-model targets and clutter.

The formulas for predicting the performance of the detection algorithms
introduced in Sections 3, 4, and 5 are derived in Section 7. The analysis uses
the product-model characterizations of targets and clutter developed in Section
6. The detection algorithms analyzed include the OPD, the PMF, and single-
polarimetric-channel detectors. In these analyses the performance predictions
for homogeneous targets and clutter are obtained as a special case of the more
general product-model solution.

Section 8 investigates the performance of a radar that uses a single-
transmit, dual-receive configuration with a circular polarization basis. This
scheme is predicated on the empirical observation that armored targets tend to
have a significant a,,;ount of even-bounce (LL) return whereas clutter tends to
have mostly odd-bounce (LR) return. A circular polarization configuration could
take advantage of this difference. Section 8 parallels the previous Sections 3
through 7. That is, for this circular polarization case, an OPD and PMF are
derived, as well as alternative suboptimal detectors. Then the product-model
characterizations of targets and clutter are used to derive formulas for perfor-
mance predictions of the various algorithms.

4



"The algorithms derived in Sections 3 through 8 assume that the
frequency-diverse radar obtains uncorrelated samples of both clutter and
targets. In practice there may be some correlation between the frequency
samples, due to insufficient frequency-diversity step size. Ignoring this
correlation produces overly optimistic performance predictions. Section 9
modifies the clutter and target models to take into account the correlation
between the elements of the PSM obtained at different frequencies.

In Section 10, a comparison of the detection performance of various
polarimetric and non-polarimetric detectors is presented. The performance
comparisons presented include (1) a comparison of the OPD, span, and single-
channel IHHI2 detectors, (2) a comparison of the PMF and single-channel
IHH12 and ILLI2 detectors, and (3) a comparison of the OPD, PMF, and dual-
circular detectors. Also, the performance degradation due to using correlated
measurement data is evaluated.

Once a target has been detected, polarimetric information may be useful
for classification of target tyoes (e.g., tank versus truck). Section 11 presents
some preliminary performance predictions for the OPD when it is used as a
target classifier.

Speckle is a major cause of degradation in synthetic aperture radar
(SAR) imagery. It is possible to use the three complex elements (HH, HV, VV) of
the polarization scattering matrix to reduce this speckle. In Section 12 we
derive the optimal method of combining the eernents of the scattering matrix to
minimize image speckle; the solution is shown to be a polarimetric whitening
filter (PWF). A simulation of spatially correlated, K-distributed, fully polarimetric
clutter is developed; it is used to compare the optimal speckle reduction method
with other, suboptimal methods. Finally, the target detection performance of the
PWF was compared with that of other detectors.

Section 13 summarizes the findings of these studies and describes some
possible future study efforts.

5



2.0 THE BASIC POLARIMETRIC MEASUREMENT MODEL

This section describes the basic mathematical modeling of targets and
clutter used in our studies. These models are used in the later sections to
derive the optimal polarimetric detector and the polarimetric matched filter.

We express the radar ret. n as the polarimetric feature vector A, where

HH + jH1 ]q R1
X= HVI + jHV4/= HV

LVV, + jVVq] vv.

Each complex element HH, HV, and VV is modeled as having a complex-
Gaussian probability density function (PDF). The joint PDF of vector X is given
by the expression

f(X= exp _ _Y`X
i01 (2)

where T. = E{X A is the covariance of the polarimetric feature vector. The data
have a zero-mean (E{(X = Q). Thus, the complete characterization of the jointly
Gaussian complex elements HH, HV, and VV is given in terms of an appropriate
covariance matrix Z. The covariance matrices which we use for target and
clutter data (in a linear polarization basis) are [3, 4] of the form

1=a 0 r 0

[p* 0 Yr]3

where a = E{IlHHI2}. e = = IHVI2I'
TEIH~fj(4)

E JHI- VV*
and P V YJ = E IHtpif)

The clutter covariance is specified by four parametars (ac Ec Yc Pc) and the

target covarianca i: also specified by four parameters (ot, F1, y, Pt). Also, since
the target is in a clutter background, the measured target data are modeled (by
superposition) as

7



_X X+x (5)

This implies that the target-pus-clutter data are also zero-mean and complex-

Gaussian with covariance

7,. + + (6)

and thus has the same structure as given in Equation (3) above, with

= ae, + a, Ec

Lt+C

Yj+C a, Y, + aTC rC

(t- aC~f7+d4

t ÷ o-,C (7)

Finally, the input target-to-clutter ratio is defined

(T / C),=.
0*° (8)

8



3.0 THE OPTIMAL POLARIMETRIC DETECTOR

In this section we will derive the optimal polarimetric detector (OPD) for
the ideal situation, that is, assuming the parameters (a, c, y, p) and the target-to-
clutter ratio (T/C) in are known exactly. The algorithm we obtain will reveal the
structure of the detector that provides the best possible detection performance
achievable under ideal conditions. The performance of this ideal optimal
detector will provide an upper bound against which other polarimetric and non-
polarimetric detection schemes c&n be compared. For our two-class problem
(i.e., target-plus-clutter versus clutter) the likelihood ratio test for the presence of
a target is [5]

f (X w j>Tf(IcL.)>T
(XQ 10)') (9) •

where we denote the target-plus-clutter class by ".c and the clutter only class
by coc. T is the detection threshold. The likelihood ratio has been shown [5] to
be a quadratic detector of the form

X*'(Z-,Tt-z'.,)X+1n =L in T
- IL, -cI (10)

Substituting particular covariance matrices defining two classes (target-plus-
clutter and clutter in our examples) into the above algorithm yields an
interesting result. Rewriting the above solution in a slightly different form, the
optimal detector uses the distances to the target-plus-clutter class and the
clutter class in the following test:

d,(X_)-d,.,(X)> In T (11)

where d,(X) = Xr"IX+ I nizd (12)

and d,.(X)= X' X + InjX,. .1 (13)

Evaluating the above distance measures, one obtains an expression for the
detection statistic [3]

9



d() I IVVL2  YL

- 1,212) - j'o/ c2-ýj IHHIVVkos(OHII - OW- Opi)

4+ ln[a E (i Ip Ci t + C (14)

where •HH, vV, and Opi are the phase terms of the complex quantities HH, VV,
and pi, respectively. The fundamental structure of the optimal polarimetic
detector is revealed in Equation (14); the detector makes use of the polarimetric
amplitude information (IHHI, IHVI, IVVI) and the polarimetric phase difference
(OHH - vv), which is the difference in phase between the HH and VV returns.
The OPD applies optimal weighting (as shown in Equation (14) above] to theobserved radar measurement data prior to making its detection decision.

10



4.0 THE POLARIMETRIC MATCHED FILTER

In the previous section of the report we defined the two-class target
detection problem and derived the detection algorithm which makes optimal
use of the observed polarimetric return. This algorithm is optimal in the
likelihood-ratio sense; that is, it yields the best possible probability of detection
(PD) for a given false alarm probability (PFA). An alternative approach is to
design a linear processor or matched filter, which processes the polarimetric
return so as to provide maximum target-to-clutter ratio to the raoar detector. We
will call this algorithm a polarimetric matched filter (PMF); it is easily derived
using the approach given in Reference 7. A brief derivation of this detector is
given below.

Again the assumption is that we have two classes (the target-plus-clutter
class and the clutter class) but we now seek the best set of linear weighting
coefficients for processing the polarimetric data vector. That is, we seek the
linear combination y = 1ltx which provides the maximum target-to-clutter ratio at
the filter output. This ratio is given by

(T / C)., = ht-- h
h Z,h (15)

The polarimetric matched filter makes use of the target and clutter covariances
., and Fc. This implies a design which is independent of the actual input target-

to-clutter ratio; i.e., the PMF is a constant-coefficient filter.

It is well known [7] that the optimal weight vector, denoted h*, is obtained
as the solution to the generalized eigenvalue problem

11h". = 2L,7 h" (16)

where h° is the eigenvector corresponding to the maximum eigenvalue, V'.
Also, the maximum eigenvalue Xis actually the optimal target-to-clutter ratio out
of the filter which is obtained as a result of using the optimal h°. Equivalently,
one may obtain the (X°, h°) solution by solving the following simpler eigenvalue-
eigenvector problem:

7,17,h" = ZL•" (17)

It is more convenient to solve this equivalent eigenvalue problem since the

structure of the matrix I.." ., is simple and easily leads to an exact analytical
solution.

11



Specifically, we find

0 r'(1 -pye 0 a

= d e C 0 e-C(Y,--yt -1 YPC P') jt

(18)

Although the above matrix is not symmetric, it has been shown [7] that the
eigenvalues are all positive. In evaluating the eigenvalues and eigenvectors of
Equation (18), we first simplify the solution by omitting the scale factor
at/ac (1 -Pc 2)ECyc since the eigenvectors are independent of this scale factor.
We then determine the (normalized) eigenvalues and their corresponding
eigenvectors. The results of this analysis are summarized as follows:

1. The (normalized) eigenvalue X., = Etyc(1-pc2) has the eigenvector

[01

LO0 (19)

2. The remaining (normalized) eigenvalues X2 , X3 are found to be

; 2 =0.54•E .. •y 1y4pt2+4p2 2 44,r?'2 p, 44, -y'p,+C +

-2zf jT\fp P,+ Y, + ),] (20)

•,~~~~~~~~~~~P y3./o2 4• •.o•+4; =-. :p, p, -. 312p,."' p,÷ •,+ r,
A1=0.5E,[+Vyy4+p--;_ 4- Y~~1 ~ y2

-l- .ýTp' p. + r, + rYI (21)

Thus the three eigenvectors obtained for the above matrix are of the form

hl = I, h2 = 0 , h3= 0

j - L,82 A_ (22)

12



where the parameters 02 and 03 are given by the expression
•[4yp 7 3 2 p~f3/2
4[4=:j y. y, p,'-4•"•y_, y=,3 t- 4•f'y, y 3, pP, + 4y•y7'P + y - 2y•y, + y'] + y,-7

P62.3  -- Cr- _CPCPt C
2yc~yFp, - 2Cjy~yp

(23)
The optimal polarimetric matched filter corresponds to one of the three solutions
in Equation (22); in particular, it corresponds to the solution defined by the
maximum of the three eigenvalues ?, X2, X3. Thus the polarimetric matched
filter is one of the three possible linear combinations of the polarimetric
measurements, namely

(i) y, = HV

(ii) y2 = HH + /32VV

(iii) y3 = HH + P3 VV (24)

To gain further insight into the above solution, we will consider the beha-
vior of the solution for the cases 0 = ±1. These solutions are related to simple
types of radar reflectors. For the special case when y, = T( = 1, the optimal
polarization combinations become

(i) y1 = HV

(ii) y2 = HH + VV

(iii) y3 = HH - VV (25)

These three solutions correspond to the following simple target-in-clutter
situations

(i) HV is the polarization measurement that has the maximum signal
return for a dihedral reflector oriented at ±450 relative to the
horizontal.

(ii) HH + VV is the polarization measurement combination that has the
maximum signal return for a trihedral reflector.

(iii) HH - VV is the polarization measurement combination that has the
m iximum signal return for a dihedral reflector oriented
horizontally or vertically.

13



5.0 ALTERNATIVE DETECTION ALGORITHMS

Sections 3 and 4 discussed two approaches (the optimal polarimetric
detector and the polarimetric matched filter) to detecting targets in clutter. Both
of these approaches are dependent on the parameters of the target and clutter
classes. There are other approaches to detecting targets in clutter that are
independent of the parameters of the target and clutter classes. These detec-
tion algorithms are suboptimal because they ignore some of the polarimetric
information. We will consider several of these methods.

The first scheme (used extensively in various radar applications by
numerous researchers) processes the complex radar return by computing the
polarimetric span according to the relation

y = tHai-+ 21HVI 2+ IVVI' (26)

The span detection statistic makes use of the total power in the polarimetric
return and has the property of being invariant with respect to the polarization
basis used by the radar. The span is actually a suboptimal quadratic detector,
since it is obtained from the simplified algorithm

y = (HVV)02 0 , T
0 0= 1- VV] (27)

Note that the span detector does not make use of the polarimetric phase
(OHH - 4VV)• Since the span detector utilizes only the polarimetric amplitude
information, using it will provide some insight from the comparison of perfor-
mance results for the varicus algorithms as to the usefulness of polarimetric
phase in our target detection application. We will also consider single polari-
metric channel radars (specifically, HH, LL, and LR) and will compare the per-
formance of these simpler algorithms to that of the more complex algorithms.
Finally, we will evaluate the performance of a single circular transmit, dual
circular receive radar system. This scheme makes use of both LL and LR
polarimetric returns and we will compare the performance of this system to the
performance achieved using the full PSM system.

15



6.0 NON-GAUSSIAN TARGET AND CLUTTER MODELS

The previous sections presented a number of polarimetric and non-
polanmetric detectors, namely,

1. The optimal polarimetric detector (OPD)
2. The polanmetric matched filter (PMF)
3. The span detector
4. Single-channel (non-polarimetric) detectors

This section develops more realistic target and clutter models; these will
be used in the next section to evaluate the detection performance of these
algorithms and their sensitivity to non-Gaussian distributions of targets and
clutter.

Until now we have assumed a homogeneous clutter background; as a
result each clutter pixel in the scene had the same average polarimetric power
and the same covariance between the polarimetric returns. Also, we assumed
the target-plus-clutter samples to be from a single Gaussian PDF (probability
density function) with a constant average power and covariance. It is more
realistic to assume that (a) the clutter background is spatially nonhomogeneous,
and (b) the target returns vary with aspect angle. To this end, in this section we
postulate random polarimetric target and clutter models consistent with these
more realistic assumptions. Specifically, we postulate random polarimetric
target and clutter models having a product-model structure. This enables us to
evaluate the effects of spatial variability of clutter and aspect angle variability of
targets on the performance of the optimal polarimetric detector, the polarimetric
matched filter, and the other, simpler detectors. To compare these detectors, we
also need an optimal likelihood-ratio detector for the product models of targets
and clutter. Therefore, we also derive the exact PDF for the product model
polarimetric feature vectors and implement the likelihood ratio detector for the
product model problem.

Since we are interested in a product model for both targets and clutter,
we take the model to be of the form

Y = (28)

where -r represents an arbitrary scale factor. Our basic assumptions are (1)
that the feature vectors X have a specified covariance matrix Y. and (2) that the

vectors X are scaled according to some random variable ;g-. This defines our
product model for polarimetric data measurements and represents a simple
extension of the single-polarimetric-channel product models of targets and
clutter derived in Reference 2. Determining the PDF of random vector I is
straightforward and proceeds as described below.
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For a given value g, we have

E{y / g) = .FgE{_X} =__.(29)

COV {/g} = g (30)

Since the vector X is assumed to be complex-Gaussian, the conditional PDF of
random vector y is also complex-Gaussian

I I _ _yf(Y / g) -ig T exp - -
~rgi~ Ig} (31)

Next, we compute the unconditional PDF of random vector _Y which is obtained

from the integral

f(Y) = ff(Y- g) f(g) dg (32)

where f(g) is the PDF of the scalar product multiplier. In References 8, 9, and
10, a Gamma (or chi-square) distributed cross-section model was assumed
having density

fG(g) = =jg~~ - { e } 33g g F~) ýil(33)

In this two-parameter cross-section model, v is the order parameter and

g is related to the mean radar cross-section. This has been shown [8, 9, 10] to
yield the K-distribution for single polarimetric-channel ground clutter and sea
clutter. We have shown that this distribution is a reasonable model for both
radar ground clutter and targets similar to that data collected using the HOWLS
(1] radar. We will apply this cross-section model to the polarimetric feature
vector problem and will show that this leads to a generalized K-distribution for
the PDF of random vector Y.

In the fully polarimetric case, it has been found that tree clutter agrees less well
with this product model than does meadow clutter. We anticipate future work in
clutter modeling in order to generalize the product model so that it agrees with
both meadow clutter and tree clutter. Substituting Equations (31) and (33) into
Equation (32), we obtain the result

_ 7O r(1) -fi J'l° exp {-gY1r'Y} exp J-- dg ( )

18



Using tabulated integrals from Reference 11, we obtain the result

f(Y) = tgr3V 2 g(35
fo ) 3 -- ,,t,_,. ). (3- v)12

Given this exact PDF for the product model characterization of targets and
clutter, we next obtain the corresponding optimal log-likelihood ratio detector.
Omitting the details, we obtain the distance measures Dt+c(Y) and Dc(Y)

Di(Y) = (v1 -3) in (d2,/ 2g) + in K.{2 •-j

-InF(v,)- Inl 1,I-- v1 in g
where d,=Y"'Y ; i = ct + c (36)

The optimal polarimetric detector for product-model targets and clutter deter-

mined by Equation (36) has the same form as Equation (11); i.e., the optimal

test for the presence of a target is

D,(Y) - D, +, (_y) > in T (37)

We will use this detector in the ideal situation-where the parameters (a, c, y, p)

and the target-to-clutter ratio are known exactly and the parameters (v, g) are

also known exactly. The performance of this detector therefore will provide an

upper bound against which we can compare the performance of our other
detectors. In this way, we may judge the relative degradation in performance

which occurs when the detectors are designed for some nominal target and

clutter parameters but tested against product model input data.
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7.0 SENSITIVITY ANALYSIS OF POLARIMETRIC DETECTION
ALGORITHMS

In the previous sections, we derived polarimetric and non-polarimetric
detectors for homogeneous (Gaussian) target and clutter statistics. In this
section, the actual test inputs will be assumed to have a product model struc-
ture, and the sensitivity of the detectors to the effects of clutter spatial variability
and target aspect-angle variability will be determined.

7.1 ANALYSIS OF THE OPD - SINGLE-LOOK SOLUTION

For the optima! polarimetric detector, we write

y = X(.' - -'.) X+C (38)
where

C = In -I-lnTz,. o* (39)

Taking the approach of References 12 and 13, we evaluate the conditional
characteristic function of random variable y:

exp {2it-I}dX

f..fexp {iw(2j[E - I: '12 + C)} ir .1E (40)

The above expression implies that we have designed the detector using nomi-
nal 2+c and Ic for our target-plus-clutter and clutter classes, but are testing the
algorithm with measurement data that have a product model structure by
appropriately selecting . and g. For now, however, we assume a given g and
evaluate the exact characteristic function to be of the form

1,,,(jw) = el 1l
I (1 - j2g,;.w) (41)

where the eigenvalues %I, X2 , X3 are obtained from the simultaneous diago-

nalization of the matrices

Ic'- I+, and E" (42)

A FORTRAN program which computes the eigenvalues %1, ?2 , and X3 is
included in the Appendix. The eigenvalues are given as analytical closed-form
expressions; these expressions were obtained using MACSYMA [14].
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Expanding Equation (41) by partial fractions yields

0,,,(jw) = eA 1 Y AI-I (1- j2g,• y) (43)

where the residues A, are simple functions of X1, X2, and X3. Taking the
inverse transform yields the conditional probability density

3f,/,(y) = I I A,f,(y) (44)

where

f 1(y) =F 'l( -
}W

(I P jg),;') (45)

Detection and false alarm probabilities are obtained by integrating:

PDFA(g) = f,(g)dg (46)

The result is the sum of three integrals
3

PDIA(g) = , A,P,(g) (47)
where

P.(g) = 1- exp !gk- i >0,C<0

P,(g) = 0 X,> 0, C > 0

P,(g) = exp 2g-• ;L.< 0, C > 0

P,(g) = 1 ;Z < 0, C < 0 (48)

The above expressions (47) and (48) are valid for any "articular value of g.
When g is modeled as a random variable (as it is for the product model), the
detection probability is likewise a random variable. An average probability is
obtained by averaging with respect to g:

PDIFA = E,{PBFA(g)} = I A,Et{P,(g)} (49)
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where

1-i~2K 2 -
E5{P,(g)} = - r(v) ;•,F o, > ' o

E,{Pi(g)} = 0 ;X*i > 0, C > 0

E5{P,(g)} : ( 2X- g<(v) 0,C>0

EA{P,(g)} = 0 ;X, < 0, C < 0 (50)

The exact PD/FA performance of the OPD for homogeneous target and clutter

models is obtained from Equations (47) and (48) by setting the random multi-

plier g = 1. The exact solution for the detection performance of the OPD

involves calculation of the three eigenvalues X1 , X2 , X3 from simultaneous

diagonalization of the covariance matrices of Equation (42) above; this is true

for both homogeneous and non-homogeneous inputs. The exact solution to

this simultaneous diagonalization problem is given in the Appendix.

7.2 ANALYSIS OF THE OPD - MULTI-LOOK SOLUTION

We are interested in evaluating the performance of the OPD when two or

more independent measurements of the polarimetric data, X, are processed in

an optimal manner. In this subsection, the extension of the analysi!. to the multi-

look case is presented. The assumptions we make are (i) that eac,, observed

polarimetric measurement vector from class wc has the same mean and

covariance statistics (., Tc) and (ii) that each polarimetric measurement vector

from class ",c has the same statistics (Q, ý+c). With these assumptions, it is

easy to show that the likelihood ratio test for m independent observations is

equivalent to sequentially processing each observed vector &, i=1,2,...m in the

single-look quadrat ic classifier [15]. The single-look detection statistics y, are

then summed and compared with the detection threshold T. Finally, since the

characteristic function of a sum of independent random variables is the product

of the individual characteristic functions, we obtain for the m-look case

0(m;{jw) = e'- 1 3 1
,-, (1-j2g;Ajw)m  (51)

From this, one may obtain the exact formulas for detection and false alarm pro-

babilities. The solution is lengthy and only the final results will be given here.

Using the partial fraction expansion technique of Reference 16, we obtain the

solution

PDA(g) A (m) (52
2.3 L. (52)
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where

Pi(,) = Gil(g) ; 1,> 0, C < 0
Pi(r) = I ;Ai> 0, C > 0

pi(m) = -G j(g) ;,A, 0, C > 0

Pa() = 0 ;A,< OC < 0 (53)

where

G•(g) 2'(1- 1)! d(54)

and
and +, (-3,,)I

Ail 3 " :
(M-I) I A(-2Ak)- (.o

[(-m n + 1)(-m - n + 2) .... (-m)] [(-2m + I + n + 1).. (-m)]
2m*I-n

l] ~ l 2, 2•.(55)

where il = modulo 3 (i) + 1

i2 = modulo 3 (i+1) + 1

Finally, when the test inputs have the product multiplier, g, which is charac-
terized by the Gamma distribution of Equation (33), we take the expectation with
respect to this vanable and obtain

-1 A,,E (56)

where

E P,)}= E,{G,•(g)} ; Aj, > 0, C < 0

E,{P. ))- I ;Li > 0, C > 0
E,{PI")} I- E,{Gd(g)}'; A, < 0, C > 0

E, = 0 ;, < 0,C < 0(57)
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and

2
g V r(v) k-o 2'-k! 2gA. (58)

7.3 ANALYSIS OF THE PMF - GENERAL SOLUTION

Compared to the analysis of the OPD, discussed above, analysis of the
matched filter algorithm is simpler because the algorithm is linear. We will
briefly summarize here the solution for the multi-look case.

The output of the filter is a complex-Gaussian random variable comprised
of the optimal weighted sum of the HH, HV, and VV data. This output is
noncoherently detected and summed prior to being compared with the de-
tection threshold T. Mathematically, the algorithm is represented as

M 2

y k X T (59)

Random variable y is chi-square, since it is the sum of m-independent exponen-
tial variables; therefore, in order to calculate the detection performance of the
algorithm, we need only compute E{ IbtX 12). We obtain

Etjht 1 2 = gd2(h)

where d2(b.) = h'-h (60)

and g is the product multiplier

The conditional detection and false alarm probabilities, for a given value
of the multiplier, g, are

(7) (g gd2)h) 
_ T

PDIF k L-( k! )gd }2( ) (61)

As with the OPD, the homogeneous target and clutter case is obtained by

setting g - 1 in the above expression.

When the product multiplier is modeled as a Gamma random variable

with parameters ((vi, gi) i = t+c,c}, the average detection performance is
calculated to be
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E ~ P g ~ = 2 m -1 (T1 / d ( l) T g K( 2 T)E{POIFA(g)} = =" T.-o d-_), K,.k .d(h) . (2

7.4 ANALYSIS OF SUBOPTIMAL DETECTORS

Two suboptimal polarimetric detectors which are under investigation use
simpler detection statistics based on the polarimetnc span ( IHHI2 + 2 IHVI2 +
IVVI2) and the single channel, IHHI 2 . Analysis of each of these algorithms is a
special case of a previous analysis. The single IHHi 2 channel detector is a
special case of the matched filter. Its detection performance is evaluated by
letting

h' = (1 0 0) (63)

in Equations (61) and (62).

Similarly, the detection statistic based on the polarimetric span is a
special case of the OPD. Evaluation of its detection performance is easy
because this detector is quadratic and of the form

1- 0 0
y=Xt0 2 X+C> 0

o0 0 1. (64)

Thus, we modify Equation (40) to obtain the following:

1 0 0 exp, - IdX

,( = J...J exp jwX' 2 X + c , g3 }d I(5
0o l (65)

and use our previously developed solution to evaluate detection performance
for this algorithm.
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8.0 DUAL CHANNEL LL, LR DETECTION ALGORITHMS

Previous sections presented descnptions of detectors which used the full
PSM (in a linear HH, HV, and VV polarization basis). An interesting alternative
to the use of the full PSM for detection of targets has been proposed, namely
dual channel LL, LR detection algorithms. In this scheme, left circular polari-
zation is transmitted and both LL and LR polarizations are received simulta-
neously. As was done previously for algorithms using the full PSM, a number of
algorithms for processing the LL and LR data will be discussed: (1) the optimal
detector using both LL and LR data, (2) a matched filter detector using the LL
and LR data, and (3) suboptimal detectors which use only the LL and LR power;
one uses LL only, one LR only, and one sums the LL and LR power.

We describe the polarimetric feature vectcr comprised of the complex LL
and LR returns by

z=FLL, +jLL 91 F~-LR + jLRqJ LR (66)

Note that to be consistent with our previous definitions and for purposes of
comparing results with the OPD, we express the LL and LR returns in terms of
the linear basis by

where

Z=T HV]
LVV.

0. = 5, j, -0.5,]

S .j 0, 0. 5j. (67)

From the polarization covariance matrix in the linear basis given by Equation
(3), the covariance matrix of Z is found to be

or 1-2Re{pJy} +y+4E 21m{p.Y}-Hj(1- )]
4[= 21m{p.FyI} + j(1- y) 1 + 2Re{p•y'} + J (68)

The optimal detector using LL and LR data can be derived in the same
manner as the OPD. That is, the optimal detector for LL and LR data, assuming
that the feature vectors are jointly Gaussian with zero mean, is one which
applies the test
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z' - z)z + In 1 in T (69)

where ,T, t+C is the covariance matrix of the target-plus-clutter vector

Z , which is defined by
t4-c

z,, =Z' + Z' (70)

where -'z- =Zz, + 2;z' (71)

The feature vectors Z comprised of LL and LR data are zero-mean and

complex-Gaussian because they are obtained through the linear transformation

(67) and because the feature vectors X comprised of HH, HV, and VV data were

assumed to be zero-mean and complex-Gaussian.

The calculation of the performance of this detector, assuming the product

target and clutter models described previously, is very similar to the calculation

of the OPD. For the single-look case

2

PDFA(g) = ,1 A1E1{P,(g)} (72)

where Eg{P 1(g)) is given by (50) where the eigenvalues (X1 %2) are obtained by

the simultaneous diagonalization of 2-,'z, - 1-.'z,., and -z-' , the covariance

matrix of the test vector. For the multi-look case

E5 {P•A(g)} = 1 1 A,, E (73)
i-1 1-11 73

where EJ{P•m)} is given by (57) and (58) and

(-2,)' [-2m + e + 1] [-2m + e + 2].. [-m]AU

(rn-f)! k �-2•2-, 2 j (74)

where i1 = moduio 2 (i) + 1

In Section 4, a polarimetric matched filter was derived using the full PSM.

In a similar manner, a matched filter detector which optimizes the target-to-

clutter ratio at the filter output can be defined using LL and LR data. As was

shown for the detector using the PSM, the filter which maximizes T/C is the
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eigenvector which corresponds to the maximum eigenvalue of -,-z,. The
performance of the matched filter that uses LL and LR data can be calculated in
the same fashion as for the matched filter that uses HH, HV, and VV data [see
Equations (59) through (62)].

One suboptimal algorithm we studied calculates the sum of the powers in
the LL and LR channels

y = ILLI2+ILRI 2  (75)

Like the span detector, this algorithm is a suboptimal quadratic classifier since
the detection statistic y can be obtained from

Y = ( L LU L R ') 1 0] [ L L]
L0 1J L'- (76)

The performance of this algorithm can be determined in the same manner as
the performance of the span detector using the PSM.

Finally, since the LL and LR responses can be determined from a linear com-
bination of the HH, HV, and VV returns as shown in Equation (67), the perfor-
mance of the ILLI only or ILRI only detectors can also be determined using
Equations (61) and (62).
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9.0 CORRELATION BETWEEN PSM MEASUREMENTS

In the previous sections, optimal multi-look detectors were derived for
processing independent PSM measurements. These multi-look algorithms
(OPD, PMF, etc.) merely sum the detection statistics obtained at each frequency
and compare this sum with the detection threshold. When the PSM
measurements at different frequencies are correlated (due to insufficient
frequency step size) these multi-look detectors are not optimal; the performance
analysis of these detectors must be modified to include the effects of correlated
measurements. In this section of the paper, we derive the mathematical
formulas for calculating the performance of multi-look polarimetric detectors
which were designed assuming independent PSM measurements but tested
using correlated measurements.

If the test vectors are not independent, the characteristic equation
corresponding to the multi-look OPD algorithm can be written

exp
... f exp{jw F -- + C1 i 1 dX, (77)

where the design covariance matrices Y.mc and Imt+c are block diagonal

0 T-.i ... 0
T ., = , == C : i c t + c

(78)

The test covariance matrix is assumed to be

rI;. r ... I ( ••

'm l)T" r )(m-
2

)17

and r is, in general, the complex correlation between PSM measurements at

any two adjacent frequencies.

The conditional characteristic function can be shown to be

3 A
O"(jw) =ewc(- (j2gA. 1 ) (80)
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where Xi are the eigenvalues of Im (Zimc - I;mt+d).

If the eigenvalues are all distinct (which is not the case when r = 0) then PD and

PFA can be shown to be
3m

PD/FA = Z A1 E5 {P1(g)} (81)

where Eg{Pi(g)) is given in Equation (50) and the residues are

3m
Ai=n I_

i , ) (82)

It can be shown that _ .- -,..is of the form

A rA . r(m'1)A1

_ _r'A A ... r(m'2)A

r.(')A r*(m2) A ... A (83)

where A = t - (84)
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If we define

R = r" .. r(m-21)

rm r' 2) . J (85)

then the eigenvectors of I.m(*. - T..J can be shown to be of the form

hR(1) h 1
EhR(M) y (86)

where hy is an eigenvector of 1 (1.,- I-',) and _hR is an eigenvector of R

[hR(1M
R-R= hR(2)

Ih(m)j (87)

Also, the 3m eigenvalues of ,m(-, - can be shown to be the product of an

eigenvalue of R with an eigenvalue of 1_(E*'- 2_*'j. Since we have obtained the

eigenvalues of (7.- TJ, using MACSYMA [14], we only require the

eigenvalues of R in order to find the eigenvalues of m Note a!so
that the complex matrix R, for which r = Ir 1e0•, can be factored as

[1 Ir Irr1

lm I lrl m ... (88)
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where

e , 0 .. ..( =[0 ei2 ... 0

[e L 07-1 (89)

Thus two matrices of the form described in Equation (85) whose elements have
the same magnitudes but different phases share the same eigenvalues. This
implies that the detection performance of the multi-look OPD algorithm is
independent of the phase of the correlation between frequencies. The
eigenvalues of the matrix R must be computed numerically.

Other polarimetric detectors such as the span, the LL, LR optimal detector
and the ILLI 2 + ILRI2 algorithms are also quadratic detectors. Thus, the
detection performance of these algorithms for multiple correlated looks can be
solved in the same manner as above.

For the PMF, the optimal processing of independent multiple looks is to
sum the magnitude-squared of the matched filter output from each look.
Clearly, this algorithm is also sensitive to the correlation between PSM
measurements at different frequencies.

Using the multi-look model described above where the covariance of the
vector Xm is described by Equation (79), the outputs of the PMF for multiple
correlated looks are jointly Gaussian random variables. Because of this, the
detection performance of the PMF can be solved in a similar manner similar to
the OPD. Thus, for m-looks we obtain

M

PD/rA =EI A E5{P,(g)} (90)

where

m
A n

1=Ji~j (91)

and Eg(Pi(g)} is given by Equation (50). The Xi in the above expression are the
eigenvalues of the matrix am2 R where ar 2 is the variance of the single-
frequency matched filter output, for a given scale factor g. Other algorithms
such as the jHHI2-only, ILLI2-only, and ILRI2-only can also be evaluated in the
same way.
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10.0 DETECTION ALGORITHM PERFORMANCE PREDICTIONS

The information presented in the previous sections includes the
following: (1) a discussion of a number of detection algorithms, (2) development
of homogeneous (Gaussian) and non-homogeneous (non-Gaussian) product
target and clutter models, (3) derivations of the formulas necessary for
evaluating the performance of various detectors for: single-look and multi-look
cases, and for homogeneous and non-homogeneous targets and clutter. This
section predicts the performance of the various detection algorithms in different
situations. It does so by using parameters (a, E, -y, p) from measured target and
clutter data to construct polarization covariance matrices of targets and clutter.
These covariance matrices are used to calculate predicted detection
performance of the various detectors. The subjects discussed in this section are

1. OPD, Span and IHHI 2 Performance Predictions
2. PMF Detection Performance Predictions
3. Detection Performance Using Circular Polarization
4. Discrimination Performance of the OPD

The performance predictions presented in this section of the report are
based on polarimetric measurement data from typical ground targets and mea-
dow clutter. Detection performance predictions presented in this section are for
an armored target (target 1) versus clutter. Target discrimination results pre-
sented are for target 1 versus target 2 (a truck).

The polarimetric parameters of these targets and clutter are presented in

Table I.

TABLE I

Polarimetric Parameters of Targets and Clutter

TARGET 1 58.5 0.19 1.0 0.28
TARGET2 618.3 0.02 1.1 0.83

CLUTFER 4.75 0.18 1.6 0.63

10.1 OPD, SPAN, AND IHHI 2 PERFORMANCE PREDICTIONS

This section compares performance predictions of three different
detectors; (1) the optimal polarimetric detector (OPD) which uses all the in-
formation contained in the PSM, (2) the polarimetric span which uses the
amplitude information but not the phase information in the PSM, and (3) the
single-channel IHHI 2 detector which is the simplest radar detection scheme.
This is the type of detector used in the HOWLS [11 program.

Single-Look Predictions: We have compared the performance of
the OPD with the performance of both span and single-channel IHHI2
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algorithms. Both OPD and span processing require two pulses per look,
whereas IHHI2 processing requires only one. A fair comparison among the
three algorithms requires the use of the same number of pulses. Therefore, we
assumed that (1) the "extra" pulse for IHHI2 processing would be used to
provide a second, independent sample at a second frequency, and (2) the two
independent IHHI 2 samples were noncoherently averaged.

For single-look processing with homogeneous targets and clutter, Figure
1 shows that the OPD outperformed span processing; this is to be expected,
since the OPD uses al! the polarimetric information in an optimally weighted
fashion. The IHHI2 processing also outperformed span processing, even
though span processing uses all three polarimetric amplitudes; presumably this
is due to the use of two independent samples in the IHHI2 processing.

The OPD performed somewhat better than IHH12 processing. However,
achievement of this improvement in detection performance requires exact
knowledge of the target-to-clutter ratio as well as the target and clutter
covariance statistics, since the optimal weighting coefficients are computed from
this information. Since these target and clutter statistics are difficult to predict a
priori, implementing the OPD in a real system would be difficult.

Contribution of Polarimetric Phase Information: The contribution
of the polarimetric phase term, IHHI IVVIcos ()HH - OVV), in target detection does
not appear to be significant. In the first place, it can be shown that the distance
measures of Equations (12)-(14) are dominated by the radar cross-section
terms ( IHHI2 , 1VV12, iHVI2 ). Another way to show this is to evaluate detection
performance using amplitude-normalized feature vectors. The optimal
processor of normalized data (OPDN) [17] provides the best possible
performance for normalized Gaussian feature vectors. The optimal
performance for the normalized data is showrn in the curves of Figure 2. A
comparison of the performance of the optimal processor for normalized data
(Figure 2) with that of the OPD which processes unnormalized data (Figure 1)
clearly shows that it is the polarimetric amplitude information which provides the
good detection performance results of the OPD.

Multi-Look Processin9: Figure 3 summarizes the performance
predictions for the 6-dB target-to-clutter ratio case using multi-iook processing
for homogeneous targets and clutter. IHHI2 detection performance is again
superior to detection using the span statistic. An optimally weighted
combination of the IHHI2 , IVVI2 and IHV12 amplitudes might improve
performance of the span detector somewhat; however, the span performance is
bounded above by the OPD, and HH processing is not significantly worse than
OPD performance.

Product Model Effects: The results of Figure 3, which correspond to
multi-look processing of statistically independent PSM samples, are very
optimistic because idealized homogeneous target and clutter models were
used. With more realistic product model representations of targets and clutter,
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we obtain performance results for HH processing which are consistent with
those achieved using the HOWLS [1] radar data.

The curves of Figures 4 and 5 show more realistic algorithm performance
predictions based on the product target and clutter models. These figures show
the performance of the OPD designed for homogeneous target and clutter
models but tested against nonhomogeneous product target and clutter model
inputs. Comparing Figure 4 with Figure 1 (and Figure 5 with Figure 3) shows
the deleterious effect of nonhomogeneous targets and clutter on the
performance of all three algorithms. For example, for PFA = 10-3 the detection
performance of the OPD with 10-dB target-to-clutter ratio is degraded from 90
percent to less than 70 percent. Similar reductions can be observed for the
other algorithms and at other target-to-clutter ratios.

Furthermore, the performance improvement achieved through multi-look
processing is considerably reduced when the more realistic
(nonhomogeneous) target and clutter models are used (compare Figure 5 with
Figure 3). Thus, the benefits of frequency averaging of independent PSM
samples are reduced due to nonhomogeneity of the target and clutter models.
These observations are consistent with results obtained previously using
HOWLS data [1]. Also, the performance advantage of the OPD relative to IHHI 2

processing is reduced in this case since the OPD detector was designed to be
optimal for homogeneous target and clutter models.

Sensitivity to Product Model Parameters: in a previous study (1],
we showed that the nonhomogeneity of ground clutter and aspect angle
variability of targets were dominant factors in the reduction of detection
performance of a single-channel IHHI 2 detector; that is, the sensitivity of de-
tection performance to the target and clutter standard deviation parameters, a,
and oa, is quite severe. To verify that this effect also applies to polarimetric
detection algorithms we have evaluated the performance of the OPD over a
reasonable range of ac (1, 1.5, 2, 2.5, and 3 dB). Figure 6 shows the OPD
performance predictions for single-look and 4-look processing. The top curves
(denoted as c =- 0 dB) correspond to the homogeneous clutter model and are
included as an upper bound on performance. From the curves, it is clear that
detection performance is degraded rapidly with the increasing nonhomogeneity
of clutter.

We have also evaluated the performance of the OPD over a reasonable
range of at (0, 1, 2, 3, and 4 dB). Figure 7 shows the resulting performance
predictions. From these curves, it is seen that the single-look results are less
affected by a change in c4 than the 4-look results. Nevertheless, there is, in
general, a fairly strong dependence on c4.

Comparison of OPD with Product-Model Likellhood Ratio Test:
The product-model likelihood ratio test is the optimal detector for product-model
targets and clutter. This algorithm was defined in Equation (37). Since the OPD

(designed for homogeneous models) exhibits degraded performance when
tested with nonhomogeneous models, it is of interest to compare the
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performance of the OPD with that of the LRT algorithm. Our studies indicate that
over the range of parameter variations of interest the OPD performs almost as
well as the LRT algorithm.

10.2 PMF DETECTION PERFORMANCE PREDICTIONS

The OPD discussed in previous sections is the optimal processor
assuming Gaussian statistics; however, it is nonlinear, and requires a priori
knowledge of both the target and clutter covariances and the target-to-clutter
ratio. The PMF on the other hand is a linear processor which also requires a
priori knowledge of the target and clutter covariances. However, the PMF (a
constant-coefficient filter) does not require a priori knowledge of the target-to-
clutter ratio.

This section presents the results of our polarimetric matched filter studies.
We designed the PMF based on the target and clutter covariances specified
earlier [see Equations (18)-(23)]. Evaluating the eigenvalues and eigenvectors

of the matrix rl 1,, yields the following solutions:

0

(i) A =12.78E-+h, I
-0.

(i)'3=-15.58 +-+h3

The best PMF is, therefore, specified by solution (iii) above. Note, however, that
solution (i) is also a good solution. We have compared the detection
performance of the optimal PMF (solution (iii)) with that of the single-channel
IHHI2 detector. One of our objectives was to make a direct comparison of the
PMF with the results of the HOWLS radar [1], so for these comparisons we have
used product target and clutter models with standard deviation parameters cX- =
3 dB, acz - 2 dB and (T/C) = 6 dB. Equations (61) and (62) were used to obtain
the performance predictions. Figure 8 summarizes the results, showing
detection performance of the PMF with 1, 2, 4, 8, and 16 independent
polarimetric samples processed. Since these polarimetric samples require
transmitting 2, 4, 8, 16, and 32 radar pulses, we show the comparison with
IHH 12 processing using these same numbers of transmitted pulses.

The PMF (with an equivalent number of transmitted pulses) does not
perform as well as IHHI 2 processing until we process about 8 independent fully
polarimetric measurements. With 8 independent looks (16 pulses transmitted)
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the two algorithms provide essentially the same performance. The performance
predictions with 16 pulses transmitted agree closely with the HOWLS
measurements (i.e., PD - 50 percent and PFA - 10-3 with 6 dB target-to-clutter
ratio). As more Independent looks are processed, the PMF begins to out
perform the IHHI 2 detector.

We have also made a performance comparison of the best PMF design
with a detector using a circular transmit, circular receive ILLI2 system. It has
been reported that this algorithm achieves a better target-to-clutter ratio than the
linear transmit, linear receive IHHi2 system. Also, a single ILL12 measurement
requires only 1 pulse transmission. For the actual target and clutter data used
in this study, the ILLI 2 (eva, i-channel) T/C was 6.3 dB, and the IHHI2 T/C was 6.0
dB. Correspondingly,Figure 8 shows that the even channel iLL12 detection
performance is slightly better than the IHHI2 detection performance. All three
detectors are essentially equivalent in performance with 16 pulses transmitted.

10.3 DETECTION PERFORMANCE WITH CIRCULARLY POLARIZED
DATA

In this section we evaluate the performance of detectors that use cir-
cularly polarized radar data. We compare the performance of the OPD (which
uses all the information contained in the PSM but requires two orthogonal
transmit pulses) with that of simpler detectors that use a single circular transmit
polarization. The detection algorithms we examine are:

(i) the OPD

(ii) the optimal quadratic detector using complex LL, LR data

(iii) a polarimetric matched filter using complex LL, LR data

(iv) a detector using the sum of the powers ILL12 + ILRI2

(v) detectors using either ILL12 or ILRI2 data

The curves in Figure 9 compare the results using the OPD, the optimal
quadratic detector using complex LL and LR data, and the suboptimal detector
which uses the sum of the powers ILL!2 + ILRI 2 , for the situation where two
pulses are transmitted (which is the minimum required by the OPD). It is
assumed that the dual-circular detectors obtain and process two independent
looks of LL, LR data whereas the OPD uses the two transmit pulses to obtain LL,
LR, and RR returns. The analysis used product-model target and clutter inputs.
Figure 9 shows performance predictions versus target-to-clutter ratio. Figure 10
shows the detection performance of these same algorithms for a fixed target-to-
clutter ratio of 6 dB, for 1-, 2-, and 4-look data, where each look consists of two
transmitted pulses. These figures show that optimal processing of two
independent measurements of complex LL, LR data provides better detection
performance than the OPD (which requires two pulses to construct the PSM).
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They also show that the ILLi2 + ILRI2 detector (which , unlike the other two
algorithms, requires no previous information concerning the target and clutter
covariances or the target-to-clutter ratio) provides slightly less performance than
the OPD.

Figure 11 compares the performance of four detection algorithms that
require only one transmit pulse per look, tho LL, LR matched filter, the ILLI2 +

ILRI2 detector, the ILLI2-only detector, and the ILR12.only detector. The LL, LR
PMF was designed based on the target and clutter covariances specified in
Table I. Evaluating the eigenvalues and eigenvectors of the matrix
T-." z, yields the following solution

(i) ). =7.715 h,

(ii) x,2 = 14.620 <-4 h2  [0.348]

The PMF using LL, LR data is specified by solution (ii) above. Note that the
PMF weights the LL return much more heavily than the LR return.

The curves of Figure 11 indicate that the performance of the ILLi 2 . only
detector compares well with that of the matched filter (which requires prior
knowledge of the target and clutter covariances). The ILLI2 -only-detector
provides much better performance than the ILRj2-only detector.

This is consistent with the observation that the armored target contains
significant evenbounce (LL) return whereas the clutter is predominantly odd-
bounce (LR). Also, the ILLI2-only detector is also superior to the ILLI2 + JLR12

detector (because the two channels are simply added without optimum
weighting). Figure 11 shows that the best combination of polarization channels
to use in a detector is dependent on the statistics (i.e., covariance matrices) of
the particular target and clutter type. The relative performance of the detectors
shown in Figures (9), (10), and (11) might be different for different targets and/or
clutter types.

10.4 DETECTION PERFORMANCE WITH CORRELATED MULTI-
LOOK DATA

Actual correlations calculated from polarimetric measurements of an
armored target (as a function of frequency change between looks) are shown in
Figure 12. The magnitude of the correlation coefficients for all three channels
(HH, HV, and VV) is approximately 0.8 and follows closely the model defined in
Equation (79). The cross-correlation between the complex VV and HH data
also agreed with the model. Correlations calculated from polarimetric
measurements of meadow clutter were very small (less than 0.1) for all the
polarimetric channels. Thus, the results described below assume a frequency
step of 10 MHz corresponding to correlation coefficients of 0.8 and 0.0 for the
target and clutter, respectively.
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Figures 13, 14, and 15 show the performance predictions for the same

detection algorithms and cases given previously in Figures 9, 10, and 11,
however, this time with correlated multi-look data. Comparing the curves of
Figures 13 and 14 with Figures 9 and 10 shows that correlation between_
frequency measurements degrades algorithm performance slightly.
Performance of the optimal quadratic detector using LL, LR data is again
comparable with that of the OPD. The ILLI2 + ILRI2 algorithm is also shown to

give the poorest performance.

Similar remarks can be made about the comparison of performance
predictions of Figures 15 and 11. In general, the use of correlated
measurement data has degraded the performance of the various algorithms.
The relative performance of algorithms is consistent with the previous results
shown in Figure 11.
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11.0 DISCRIMINATION PERFORMANCE OF THE OPD

Once a target has been detected, it may be important to discriminate bet-
ween different target types (e.g., tank versus truck). The collected polarimetric
data for various targets may contain information as to the type of target being
observed, which may be used by a polarimetric classifier to achieve
discrimination. This section presents the results of studies which used the OPD
as a polarimetric classifier.

In our discrimination studies, we used normalized feature vectors having
unit length. This has the advantage of removing the product scale factor from
the data, so that classifier design becomes independent of absolute radar
cross-section. Only the relative amplitude differences between the complex HH,
HV, and VV elements, and the polarimetric phase OHH - ovW, are used to
discriminate among target types. Table II shows average probability of
classification error for the armored target versus the truck. The table includes
results for various numbers of looks (i.e., various numbers of independent
polarimetbic measurements processed) and for target-to-clutter ratios of 0, 3, 6,
and 10 dB for target 1 versus clutter. In each case, the target-to-clutter ratio for
target 2 versus clutter is 10 dB higher due to the larger radar cross section of
target 2 (see Table I).

TABLE 11

Probability of Classification Error (%)

Number of Looks

T/CRatio 1 2 1 4 8

10 dB 24.6 17.6 10.6 5.2

6rdB 26.0 19.2 12.0 6.2

3 dB 27.8 21.0 14.0 7.4

0dB 30.2 24.3 17.1 10.0

The results shown in Table II suggest that polarimetric information is use-
ful in discriminating between target types. However, to achieve reliable per-
formance requires multi-look processing with reasonably high (6-10 dB) target-
to-clutter ratios. Also good discrimination can only be achieved for targets
exhibiting discernable differences in polarization characteristics (e.g., the
values seen for E and p in Table I).
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12.0 SPECKLE REDUCTION USING POLARIMETRIC DATA

SAR radars produce imagery with considerable speckle. Indeed,
speckle reduction has long been recognized as one of the main problems in
coherent imaging [18], and many techniques have been proposed for reducing
speckle. With the recent availability of coherent, fully polarimetric, high-
resolution SAR data, It may be possible to optimally process the coherent
scattering matrix into pixel intensity so as to reduce the speckle content of a
SAR image.

It has been reported [19] that span SAR images appear to the eye to
have less speckle than the usual single-polarimetric-channel SAR images. A
span image is simply the noncoherent superposition of three single-
polarimetric-channel images (see Equation 26); this noncoherent superposition
produces a noticeab!e speckle reduction (relative to an IHHI2 image). In this
section we consider the optimal processing of the complex HH, HV, and VV
elements into an intensity image which has the minimum possible amount of
speckle.

In Section 2 we defined a Gaussian fully polarimetric clutter model, and
used It to characterize homogeneous clutter regions. The same simple model is
used in this section to derive and analyze the theoretical performance of various
polarimetric speckle reduction algorithms including (1) the polarimetric
whitening filter (PWF), (2) the span algorithm, (3) the optimally weighted sum of
intensities (k, IHHI2 + k2 IHVI2 + k3 1VV12), and (4) other algorithms (which use
partial polarimetric information). The theoretical speckle- reduction
performance of these algorithms is calculated, and the amount of speckle
reduction achievable in homogeneous clutter regions (the upper bound) is
quantified.

In Section 6 we defined a non-Gaussian fully polarimetric clutter model,
and used it to characterize nonhomogeneous regions of ground clutter (e.g.,
meadow and tree clutter) as well as spiky sea clutter. Spatial nonhomogeneity
was incorporated by modeling the clutter as having a gamma spatially
distributed intensity, modulated (i.e., multiplied) by an independent, complex-
Gaussian speckle component. This clutter model (a "product" model) is
consistent with the models dsveloped by Lee [20], Oliver (21], and others [8,10].
Recent clutter studies by Watts and Ward [22] have shown that the gamma
component (which characterizes the spatial variability of the clutter) exhibits
correlation between neighboring pixels. Oliver and Tough [23] have developed
approximate methods for simulating spatially correlated, K-distributed random
clutter. In this section, we develop an exact method for simulating spatially
correlated, K-distributed random clutter, by extending the approach used by
Novak [24].

Finally, in this section we evaluate the performance of various speckle-
reduction a;gorithms. To do this, we simulate 2-D, spatially correlated, K-
distributed, fully polarimetric clutter scenes. These scenes are used to con-
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struct various polarimetric images (e.g., IHHI2 span, etc.), which are then used to
evaluate the performance of the speckle-reduction algorithms. We also
compare the target detection performance of an optimal polarimetric detector
(OPD) with that of the polarimetric whitening filter (PWF), and the span and
IHHI2 detectors.

12.1 DERIVATION OF MINIMUM SPECKLE IMAGE

In this section we consider how to construct an optimal image from the
three complex measurements HH, HV, and VV. We take as our performance
measure the ratio of the standard deviation of the image pixel intensities to the
mean of the intensities:

s = st. dev {y)
m E {y} (92)

where random variable y denotes pixel intensity. Given the measurements HH,

HV, and VV, the most general construction of an image is the quadratic

y = Xt'A X (93)

where weighting matrix A is assumed to be Hermitian symmetric and positive
definite (or perhaps semi-definite). To find the optimal weighting matrix A* (i.e.,
the one that results in an image whose pixel intensities have the minimum
possible standard deviation-to-mean ratio) we make use of the following results
from Barnes [4]:

E{Y}= tT (Z" A) =i, EIX(94)

Var{y}= tr (A) 2' (95)

where %1, X2, X3 are the eigenvalues of the matrix 1; A. Substituting Equations
(94) and (95) into Equation (92) yields:

m T_.tI (96)

We seek the optimal weighting matrix A', the one that yields the eigen-
values X1. X2, X3 that minimize the s/m ratio. It is easy to show that matrix A*
must be one that yields the eigenvalues

X ;L1 = ;L3  (97)
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Therefore, A* is a whitening filter, which we shall call the polarimetric whitening

filter (PWF). Thus, the minimum-speckle image is constructed as follows:

y = X2t' 1'X (98)

For clutter having a covariance of the form shown in Equation (3) we obtain the
solution

+IUl ivvl2  Invl2
-+ +( - + •

a HI2ý1P _. _-HHI IVVl COS (0•O.,- 0V ,)
jvv)_,y o(99)

where OHH, ovv and 0. are the phases of the complex quantities HH, VV, and p.

The structure of the minimum-speckle image is such that the IHHI 2 ,
IVV12, and IHVI2 intensity images are optimally weighted, and then summed.
Note, however, that the solution also incorporates a term that accounts for the
information contained in the correlation of the HH and VV data. The POL-SAR
(polarimetric SAR) image defined by Equation (99) yields a minimum standard
deviation-to-mean ratio of

(M) =3 (-4.8 dB) (100)

To summarize the major results of this section, we have shown that,
given the three complex measurements HH, HV, and VV, the intensity image
having the least speckle is constructed by (1) passing the polarimetric
measurement vector X through a whitening filter to obtain W = 1-1 X, which has
unit covariance, and then (2) summing the powers contained in the elements of

y = W1w = xlyi-_x (101)

The whitening filter provides the maximum achievable reduction in
speckle: 4.8 dB relative to an image constructed from a single-polarmetric-
channel radar.

12.2 OPTIMALLY WEIGHTED SUM OF INTENSITIES

In Section 12.1 we defined a measure of speckle and derived the processing
of the three complex elements of a polarization measurement vector which mini-
mized the amount of speckle in the intensity image. The optimal solution was
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shown to be a weighted sum of IHHI 2 , IHVl 2 , and IVVi2 plus a term which made
use of the information contained in p, the complex correlation between the HH
and VV terms. In this section we consider a simplified version of the optimal
solution, one which ignores the correlation between HH and VV. Thus, we con-
sider an intensity image

y = IHII 2 + k21HVI2 + k31VVI2  (102)

where the weights (k2 , k3) are positive scale factors selected to minimize image
speckle. Clearly, the span intensity image (see Equation (26)) is a special case
of this more general solution.

Applying the approaches developed in Section 12.1, we first define the
matrix Z A:

SA = a tm 0 k2 E 0
[k 3 P* fy 0 k 3 r (103)

The eigenvalues of this matrix are easily found to be

A,= au, k2e (104)

(1 + k3y) + k3 Y) - 4(P) k3Y
i. 1 = r2 (105)

By substituting Equations (104) and (105) into Equation (96), we obtain
an expression for the standard deviation-to-mean ratio

I _ 1k22 +k2 2 2p 2k3r
m (1 + k2E + k3Y) (106)

Omitting the details of the derivation, we now present the optimal solution. The
minimum-speckle intensity image that can be constructed from IHHI 2 , IHVI 2 , and
IVVI2 data is

y = II-HI2 + + I-VI2 + I IVVI2
e r (107)

The standard deviation-to-mean ratio of the image constructed using the
above combination of polarimetric intensities is given by
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s - 3+4 Ip12+ Ipl4

m -9 + 6 1p2 + Ipl' (108)

Two special cases are of particular interest. These are (1) p = 0, and
(2) p -ý 1.

When p = 0, Equation (107) is equivalent to the whitening filter, and
yields the result

S
s - (-4.8 dB)M T (109)

which is the optimal performance obtained previously. Each intensity image
IHHI 2 , IHV12 , and IVVI 2) provides an independent look at the clutter scene.

Scaling the IHVI2 intensities by E-1 and the IVVI 2 intensities by y-1 yields three
polarimetric images which have the same average power; these three images
are then noncoherently summed to obtain an average image having minimum
speckle.

As p-4l, the IHHI2 and IVVl2 images become identical and

(-L- -L (-3 dB)
(110)

which is equivalent to the noncoherent summation of two independent looks at

the clutter scene. In this case, the IHVI2 intensities are scaled by 2C- 1 and the
IVVI2 intensities are scaled by y-1. The independent IHVI2 image is given twice
tha weight as the perfectly correlated IHHI2 and IVVI2 images.

The amount of speckle-reduction achieved by span processing can be
easily calculated by letting k2 = 2 and k3 = 1 in Equation (102) and (106). This
yields a standard deviation-to-mean ratio of

s ;I + 4e+ y2 + 2 lpI2y
m (I+2+ r) (111)

Other intensity images may be constructed that use partial pclarimetric
information. For example, weather radars have been implemented which make
use of complex HH and VV returns. Given complex HH and VV measurements,
the optimal solution is obtained simply by letting HV = 0 in Equation (99). This
gives
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Constructing a POL-SAR image using the above algorithm reduces the amount
of image speckle by 3 dB relative to a single-polarimetric-channel image. Other
dual-polarization measurement schemes (e.g., LL and LR or HH and HV) may
be analyzed using the approaches described above.

12.3 NON-GAUSSIAN POLARIMETRIC CLUTTER SIMULATION

The results presented thus far assume a homogeneous clutter scene; with this
assumption, each pixel of clutter in the scene has the same average
polarimetric power and the same covariance between the polarimetric returns.
A number of authors [8, 9] have stated that it is more realistic to assume that
ground clutter, sea clutter, etc., are spatially nonhomogeneous. The non-
Gaussian clutter model described in Section 6 is consistent with this more
realistic assumption; the clutter model has a gamma-distributed intensity
multiplied by an independent complex-Gaussian speckle component. This
yields polarimetric clutter with a K-distributed PDF.

The non-Gaussian clutter model we shall use to simulate clutter scenes

has the product-model structure Y =,Fg X where g is a gamma-distributed
intensity and Xý is an independent complex-Gaussian polarimetric vector.

Since the gamma variable (which characterizes the spatial variability of
the clutter) is generally spatially correlated, we need to develop an exact
method for simulating correlated K-distributed clutter scenes. The technique we
will develop provides synthetic POL-SAR clutter scenes which have two
desirable properties:

1. The gamma samples have the exact PDF specified by Equation (33).

2. The gamma samples are spatially correlated according to any
specified 2-D correlation function (Gaussian, exponential, etc.).

Our approach is not restricted to the gamma random variable; any
desired random variable (Rayleigh, Weibull, lognormal, etc.) can be simulated
having any specified 2-D correlation function. Approximate solutions (such as
proposed in Reference [25]) are not necessary.

Figure 16 shows a block diagram of the polarimetric clutter simulation.
The following paragraphs provide a step-by-step description of the data trans-
formations used to generate a synthetic 2-dimensional, spatially correlated, fully
polarimetric clutter scene.
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Figure 16. Block diagram of spatially correlated, K-distributed,
fully polarimetric clutter simulation.

65



Ztgg: A 2-dimensional array of independent, zero mean Gaussian
random variables (denoted x..) is obtained; these data are
processed in a 2-dimensional filter to obtain a spatially
correlated Gaussian scene (yij).

Ste. : The correlated Gaussian samples (yij) are transformed into
correlated uniformly distributed samples (uji) by the non-linear
transformation.

U Y expl 2- I d
-- =(113)

This transformation is simply the cumulative probability distribution func-
tion (the error function) of a Gaussian variable. Each input Yij is converted into a
uniform variable uij. Since the samples y,, are correlated, the samples uij are
correlated. The array denoted uij is therefore a spatially correlated set of
random samples having a uniform PDF.

S3: The array uij is then transformed into an array of spatially
correlated gamma variabies (gij) by the nonlinear transformation

g = Fo'(U,) (114)

where FG-1 (uij) is the inverse cumulative distribution function of the gamma.
Denoting the input and output by uij and gii respectively, we solve the
expression

Il J f (g) dg
o (115)

.ep.4: Finally, the fully-polarimetric measurement vectors Yij are
obtained by multiplying the spatially correlated gamma array gij by
independent complex Gaussian vectors X.j The tech nique used
to simulate these complex-Gaussian vectors is based on the
method of Marsaglia [26]

[1 0 0+ jr+ 1
[Po" 0 Y(plpI2)]LT4 + jr (116)

where ro, rl, r2, r3, r4, rs are statistically independent zero mean Gaussians, each
having a variance of 0.5.
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12.4 ANALYSIS OF CORRELATION TRANSFER FUNCTION

In this section we calculate a "correlation transfer function" for the system
used to transform correlated Gaussian variables into correlated gamma
variables (see Figure 16). The actual correlation function of the gamma data
(gii) will be different from that of the correlated Gaussian data (Yij) due to the
nonlinear transformations used. The objective of the analysis that follows is to
evaluate the output correlation (pout) as a function of the selected input
correlation (pin) of the Gaussian variables. This will permit us to specify a
correlation function for the Gaussian data which yields any desired 2-D correla-
tion function for the gamma data.

Cearly, the samples gij have a first-order probability density which is
gamma. Since the samples Yij comprise a stationary Gaussian process, the
samples gj are also stationary. To eva!uate the correlation between any two
gamma samples we must calculate E {gi 90k). To simplify notation, we define

A IN

Y1=Y,, ; Y2 =YkI (Gaussian) (117)

A A

,=u,'); 2=ukt ,Jniform) (118)

A A•

g,=g,, ; 2=gk, (Gamma) (119)

The expectation we must evaluate is written

E{g,, g2l=Jjig) g2 U9(g 92) dg, d92o00 (120)

where fG (g1 , g2) is the joint PDF of g, and 92. Thib quantity is evaluated by
calculating the expectation with respect to ul and u2.

E{g,, g2} = JJF"(ui)F0 '(u 2) f.(u1,u 2) du, du2

00 (121)

where the joint PDF of the uniform samples is d6.ived to be

{' pin 2(y,2 + y 2 )-2 pin y, Y2

f.(u1,u 2) = exp- 2 -(1
-1 - pn 2 ) (122)
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Finally, the correlation between the two gamma samples g, and g2 is
determined from

E{g, g2}-E2 {g1 }
PUt E{g 2 " -E2{g1} (123)

Typical clutter regions have clutter standard deviations(oLc) of
approximately 1 dB (meadow clutter) to 3 dB (tree clutter). We have evaluated
the parameters of the gamma PDF which yield these clutter standard deviations;
Table III presents these results.

TABLE iI:

GAMMA PARAMETER VERSUS CLUTTER ST. DEV (dB)

a, V

1.0 19.3

1.5 8.9

2.0 5.2

2.5 3.5

3.0 2.6

For the clutter parameters of interest, we have calculated the correlation
between gamma samples g, and g2 . To do this, it is necessary to evaluate
Equation (121) using numerical integration. The results ot the analysis are
shown in Figure 17.

Given a specified Gaussian correlation function, the curves in Figure 17
may be used to obtain the corresponding output correlation function of the
Gamma data. Likewise, given a specified correlation function for the gamma
data (ga), the required input correlation function of the Gaussian data (yij) can
be determined. In this case the problem becomes one of synthesizing a linear
fil-ter which produces the required correlation function for the Gaussian
samples (yij). Note that the curves of Figure 17 indicate that the out put
correlation, pout, is only slightly less than the input correlation, rin. Therefore,
for many applications one can simply generate correlated Gaussian variables
by convolving the array (x1j) with the impulse response of a 2-D digital filter and
the resulting correlation function of the Gamma data will be approximately the
same.

12.5 SPECKLE REDUCTION FOR NON-GAUSSIAN CLUTTER

In section 12.1 we derived the optimum processing of complex HH, HV,
and VV data into an intensity image having minimum speckle; the derivation
assumed homogeneous clutter. In the following paragraphs we evaluate the
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s/m ratio for nonhomogeneous clutter. We consider the case of spatially
independent gamma variables (this implies the data gr have spatial correlation
pout = 0). The standard deviation-to-mear ratio is derived and is shown to be
only a function of the gamma parameter, v; the s/m ratio is independent of the

gamma parameter, g. Minimizing the s/m ratio we again find that the optimal
solution is the polarimetric whitening filter (PWF) derived previously for
homogeneous clutter. Finally the analysis shows that for clutter standard
deviations of interest (cc = 1.0 dB to 3.0 dB), the s/m ratio is somewhat larger
than for the homogeneous clutter case.

Omitting the unnecessary details, it can be shown that

(124)

Note that the mean parameter g has cancelled out of the above
expression. For large v, the s/m ratio reduces to the homogeneous clutter case
(Equation (96)); this is reasonable since as v-.ýo the random product multiplier
becomes constant and the clutter becomes homogeneous.

The eigenvalues ).I, X2 , X3 which minimize the s/rr ratio of Equation (124)
are easily derived using the approach of Cadzow [7]. The numerator of
Equation (124) is minimized subject to the constraint that the denominator is
constant. As for the homogeneous clutter case, the solution is easily found to
be X, = X2 = X3. Therefore, the minimal-speckle intensity image is constructed
by processing the complex HH, HV and VV measurements just as is done for
homogeneous clutter. The resulting standard-deviation-to-mean ratio is,
however, a function of the gamma parameter, v. Substituting for the
eigenvalues, the s/m ratio becomes

kM) ý3 (125)

Note that as v-4-, the above Equation (125) reduces to the result
derived previously for homogeneous clutter. The s/m ratio for a single-
polarimetric-channel intensity image is easily shown to be

M, (126)

Using Equations (125) and (126), the reduction in s/m ratio achieved using the
polarimetric whitening filter (relative to a single-polarimetric-channel image) can
be calculated. For a clutter standard deviation of 1 dB, total image speckle (s/m
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ratio) is reduced by approximately 4.4 dB relative to the single-polarimetric-
channel image. Thus, meadow regions should look considerably more

homogeneous. For a clutter standard deviation of 3 dB, total image speckle

(s/m ratio) is reduced by approximately 3.2 dB.

In Section 12.7 we will simulate spatially correlated, K-distributed, fully

polarimetric clutter scenes and will verify these results, both numerically and

visually by showing the various intensity images.

12.6 MINIMUM MEAN SQUARE ERROR

In Section 12.5 we showed that the polarimetric whitening filter will pro-

duce the POL-SAR intensity image with the minimum s/m ratio for both

homogeneous and non-homogeneous clutter. In this section we consider
processing the polarimetric measurements into an intensity image such that the

mean square error between the intensity image and the gamma image (i.e., the

"ideal" image) is minimized. We will show that the optimal processing is again

accomplished using the polarimetric whitening filter.

Mathematically the problem is formulated as follows. The pixel intensity, y, is

given by the quadratic:

y = gX'AX (127)

We wish to minimize the mean square error by selecting an appropriate

weighting matrix, A, where:

M.S.E.= E[(y - g)2] (128)

Using Equations (94) and (95), the mean square error is calculated to be:

M.S.E.= , , E[g' 19

The minimum mean square error occurs when all the eigenvalues, %I, equal 1/4.

(This is easily shown by setting the partial derivatives with respect to X% equal to

0.) The resulting RMS error is:

RM.S.E.,= -"Eg = 1+ /

2 2 (130)

and the optimal weighting matrix, A is given by

4 (131)
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Note that this matrix also minimizes the standard deviation-to-mean ratio. The
mean square error resulting from other suboptimal combinations of the polari-
metric data can also be determined from Equation (129).

12.7 SPECKLE-REDUCTION RESULTS

We simulated POL-SAR clutter scenes and calculated the amount of
speckle reduction (i.e., the reduction in standard deviation-to-mean ratio)
achieved with span and PWF intensity images. The following paragraphs de-
scribe the experiment and summarize the results obtained.

Three fully polarimetric synthetic clutter scenes were simulated, inclu-
ding: (1) a homogeneous clutter region, (2) a nonhomogeneous clutter region
having a• = 1 dB, corresponding to typical meadow clutter and (3) a
nonhomogeneous clutter region with c~c = 3 dB, corresponding to typical tree
clutter. In order to compare results we used the same polarimetric covarance
(specified by E = 0.18, y= 1.6, and p = 0.5) for all scenes. The
nonhomogeneous clutter scenes had spatially correlated gamma samples.
These correlated gamma samples (gij) were generated by applying a 2-D digital
filter (having a 16 x 16 uniform impulse response) to uncorrelated Gaussian
samples (yij), as shown in Figure 16.

Figure 18 shows a side-by-side comparison of the gamma image with
IHH12 , span, and PWF images constructed from the homogeneous POL-SAR
data. The under-lying gamma image corresponds to an "ideal" speckle-free
image. In Figure 18, the gamma image is, of course, a constant. Table IV gives
the s/m ratios which were calculated from the intensity images of Figure 18;
these s/m ratios agree almost exactly with theoretical predictions.

Figures 19 and 20 present side-by-side comparisons of the gamma,
IHHI 2 , span, and PWF images constructed from the nonhomogeneous data.

The spatially correlated gamma images correspond to "ideal" speckle-free
images. Comparing the IHHI 2 , span, and PWF images with the ideal gamma
images, it is clear that the single-polarimetric-channel IHHI2 images are speckle
dominated, whereas the span and PWF images appear to the eye to be much
clearer. The PWF intensity images are, of course, the best.

Tables V and VI present the corresponding s/m ratios which were
calculated from the intensity images of Figures 19 and 20, respectively. From
the data shown, it is found that the s/m ratio for ac = 1 dB has been reduced by
4.38 dB relative to the IHHI2 data, and for ac = 3 dB the s/m ratio was reduced
by 3.36 dB. These results also agree quite well with theoretical predictions.
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Figure 18. Synthetic clutter images (homogeneous)
gamma image (upper left), HH image (upper right),
optimal image (lower left), span image (lower right).
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Figure 19. Synthetic clutter images (nonhomogeneous, u, 1 dB)
gamma image (upper image), HII image (upper right),
optimal image (lower left), span image (lower right).
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Figure 20. Synthetic clutter images (nonhomogeneous, tx=- 3 dB)

gamma image (upper left), HH image (upper right),
optimal image (lower left), span image (lower right).
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TABLE IV

s/m Ratio (dB)

Measured Theory
I HH12 0.19 0.00

span -2.89 -2.90

PWF -4.76 -4.77

TABLE V

s/m Ratio (dB)

Measured Theory

Il-H-Il 2  0.44 0.43

span -2.27 -2.29

PWF -3.94 -3.95

TABLE VI

s/m Ratio (dB)

Measured Theory
I IH-II• 3.01 2.51

span 0.72 0.43

PWF -0.35 -0.68

12.8 TARGET DETECTION USING THE PWF

The use of fully polarimetric HH, HV, and VV complex data for detection
of targets in clutter was studied in previous sections of this report; it was shown
that for Gaussian target and clutter models, the optimal polarimetric detector
(OPD) was a quadratic algorithm:

y=N x1(-1-( + Y,)')X_ > T
y (C Y- (132)

where Yt and Yc are the target and clutter covariances and T is the detection
threshold. The polarimetric whitening filter, also derived previously, is a
quadratic algorithm:
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y = '2Z,`X > T (133)

where Zc is the clutter covariance and T is a detection threshold.

The OPD is optimal in the likelihood ratio sense; that is, it yields the best
probability of detection (PD) for a given false alarm probability (PFA)- The PWF is

therefore not optimal since it ignores the target (i.e., target-plus-clutter)
covariance information. Detection performance using the PWF will be
degraded relative to the OPD for Gaussian targets and clutter. For nonhomoge-
neous (rion-Gaussian) targets and clutter, the OPD is not optimal; hence, we
compared the detection performance of the PWF with that of the OPD. In
addition, we also evaluated the detection performance achieved with IHHI 2 and
spar, data.

Figure 21 presents the performance of the various detectors for
nonhomogeneous product model target and clutter data. The curves shown for

the OPD and span detectors were taken directly from Figure 4; the curves for the
IHHI 2 and PWF detectors were calculated using the methods described
previously. Note that in this section of the report, IHHI 2 detection performance is
based on a look formed from a single-pulse return (in previous sections, IHHI2

detection performance was based on two noncoherently integrated frequency-
diverse pulse returns per look).

The detection performance results presented in Figure 21 indicate, for
the armored target and clutter covariances given in Table I, that: (1) perfor-
mance of the PWF is essentially identical to that of the OPD, (2) performance of
the span detector is quite degraded, and (3) the IHHI 2 detector gives the worst
performance. Thus, the PWF provides a simple alternative to the OPD (which
requires prior knowledge of both the target and clutter covariances as well as
the target-to-clutter ratio) for the detection of stationary targets in clutter. The
PWF requires only knowledge of the polarization covariance of the clutter; this
could be estimated from the complex HH, HV and VV data and then used to
construct the minimum speckle image.
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12.9 ANALYSIS OF THE ADAPTIVE PWF

In Section 12.8 we compared the target detection performance of an
optimal polanmetric detector (OPD) with the performance of PWF, span, and
IHHI2 detectors; the OPD and PWF gave comparable performance, and were
significantly better than the span and IHHI2 detectors. Since the PWF requires
only the polanmetnc covariance of the clutter, it is possible that an adaptive
PWF could be implemented. Such an algorithm would estimate the polarization
covarance matrix of the clutter, use this to construct the minimum-speckle
image, and then test for the presence of targets. The algorithm could be made
adaptive to the local clutter statistics, as is done in a standard amplitude CFAR
detector. in this section we present an analysis of the detection performance of
an adaptive PWF. We also determine the number of independent clutter
samples required to estimate the polarization covariance matrix.

In order to evaluate the detection and false alarm probabilities (PD and

PFA) for the quadratic detector defined in Equation (133) it is necessary to
calculate its probability density function (PDF). When the clutter polarization
covariance Ec is known exactly (i.e., is a constant matrix), this calculation is
easily performed using the techniques developed in Section 7. When the
polarization covariance matrix of the clutter is adaptively estimated from the
local clutter, the PDF of random variable y is more difficult to calculate; this sec-
tion provides the derivation.

It is well known that the sample covariance

N_-1 - -'- (134)

has a Wishart distribution; we do not, however, have to make direct use of this
result in the following derivation. The derivation which follows is an extension
of the approach described in Anderson [27] for deriving the PDF of the T2

statistic. The major difference between our derivation and that of Anderson is
that we treat the more complicated case where the test vector X is an indepen-
dent measurement of target plus clutter.

Consider the adaptive PWF that we have defined by the quadratic
expression

y = XFN- 'X (135)

where X - N (Q, 4 + 1c), and ix, is the sample covariance matrix defined in
Equation (134). Following the approach of Anderson [27] we assume that the
vectors 2i are independent clutter samples, thus X~c - N (., E-). First we
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whiten the clutter measurements by transforming the data vectors X and

..... XN as follows:

Y = Z,-f X (136)

Yc, = T--=½X,, , i = 1, 2,...,N (137)

The whitening transformation (from Fukunaga [5]) is of the form

Ic-I = A,-' 4). (138)

where matrix Oc consists of the eigenvectors of the covariance matrix -c, and A.

is diagonal (with the corresponding eigenvalues of -c along the diagonal).

When the test vector is target-plus-clutter, Y has Gaussian statistics:

Y_~(, - (,+ (139)

Next, examine the expression Y IX, 7-,-2 , which can be manipulated as

follows
E _'_ x XC E C_1 Y- XX. ' JC-t

IN

N (-I C C)( \-C 1 ),

N z Y'lY'c'

N ,-!- -- (140)

The clutter data vectors .cl, -•2, . ' )cN are white, since

j, = Y-I X&,- N(O, I) ;i=l, 2,..., N (141)

The sample covarance of the whitened clutter measurements is defined as

"N -y,, (142)

Next, we write the transformed test vector from Equation (136) in terms of

its scalar components:

Y = (Y1 Y21 .... YJ) (143)
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and we construct linear transformation matrix Q, where the first row of 0 consists
of the samples

q v ; i=1,2 .... p
TiT (144)

and the remaining (p-1) rows of Q are selected to be orthogonal to the first row.
This can always be done (for a simple proof, see Lemma 2 in the appendix of
refe: -',e [27]). Matrix 0 is an orthogonal matrix; i.e.,

QQ = QQ,=I (145)

We note that matrix 0 is a function of the measurements; thus, Q is a random
matrix. We now transform the data vectors Y and Ycl, Y2- ... YCN (using the
linear transformation Q) as follows:

Z=QY (146)

Z, = QY , I,"= 1, 2.... N (147)

The detection statistic (Equation (37)) can now be written

y [] _.i (148)

Next, we examine the expression Q Z _, Q which can be manipulated as
follows:

QZ ElQ~, Q'=N, ' "

N -
IN1xzz

t, Z':o
N 1-1 -' (149)

The clutter measurement vectors Z. Z_, ..., Z7,, are also white, since they are
obtained by an orthogonal tiansformatior, of whitened data.

Summarizing the derivation thus far, we have shoNn that the detection
statistic (Equation (135)) can be written as

S_, ,,(150)

I 
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where the sample covariance of the whitened clutter measurements is

C 
NT_,,=• ,., N E 11"21151)

Continuing with the derivation, we now write the test vector Z in terms of
its scalar components and obtain the following results:

S 2: lyl 2  = lyl2

1 01
1;2 =1Y q2AY 0

I-|
p

p= ,Eqpy1  =,- 1 (152)

Thus, the detection statistic y is of the form

0
y=(Z,000...O)iz,-c 0

[O.1 (153)

Next, we borrow a useful lemma from partitioned-matrix theory. 'f we write
-C '

covariances .z, and y.7 as follows:

,- = .b. "(154)

kb 12 b22 .. b2P

b P h P (155)

then the element b"1 can easily be shown to be
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b = b h2B'2b, )I-I

b = ,- 2 B1 22b, 2) (156)

Finally, evaluating the detection statistic, we find that
P l 12

(b , Ih2  Nib

2 (157)

Equation (157) expresses random variable y as the ratio of two statistically
independent random variables, rl and 8. The denominator random variable, 8,
is conditionally distributed as chi-square with N • p + 1 degrees of freedom [27].
Since the conditional distribution of 8 does not depend upon the linear trans-
formation Q, then it is unconditionally distributed as chi-square with N - p + 1
degrees of freedom.

The numerator random variable i1, where

77 = I =y t y ( 1 5 8 )

is a quadratic function of the complex-Gaussian vector Y, where

- N(_o, Z(F + (159)

There are two cases of interest: (1) when the test vector is an independent
clutter sample, and (2) when the test vector is a target-plus-clutter sample.

For case (1), we have the solution from Anderson [27] which we
summarize as follows: We know that _Y - N (Q, I) and that the numerator random
variable

p

77 1 ly-, l
is! (160)

is chi-square with p degrees of freedom. Thus, when the test vector is an inde-
pendent clutter sample, the detection statistic has a PDF which is calculated as
the ratio of two independent chi-square-distributed variables.

For case (2), tne test input Y is not white; therefore, the solution is more
complicated. Using the methods of section 7, we calculate the characteristic
function of the numerator random variable 7y
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0*,(jw) = J..J e dY
(P" + z') Y, (161)

The solution is obtained by calculating the eigenvalues X,1, X2, L3 of the matrix
-1/2 (11 + 1c) Lc'12t. This yields the result

,.I (1-jAý,w)ý -I (1 -j;w) (162)

where the A, are residues obtained by performing the partial fraction expansion.
Since the eigenvalues are all positive, inverting the characteristic function
yields the following PDF for random variable 71:

f,(7)=,, C,. k (163)

Next we will use of the formula for calculating the PDF of the ratio of two
independent variables. If we have the ratio y = Nr/5 then the PDF of y is
obtained by calculating the integral

NoJ f7N f() (164)

where f,, (i") and f8 (5) are the PDFs of , ndom variables T1 and 5, respectively.

For case (1), the numerator and denominator variables are both chi-
square-distributed. Evaluating Equation (164) yields

F(N + 1) (N)('-*'') v(P')
f'(Y)r= (p) F(N-p+I) (y+N)( + ) (165)

Thus, the detection statistic for this case has a PDF which is the F-Distribution
[27]. False alarm probability for the detector is easily shown to be

kk a
FA = 

(1 N ) (T')

N (166)

where T is the detection threshold. For large N, this expression becomes
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k -0 k! (167)

The covariance estimate used in the adaptive PWF becomes exact for large N,
and the algorithm reduces to the ideal PWF. Thus, Equation (167) is the
corresponding PFA formula for the PWF.

For case 2, the numerator variable has a PDF which is a sum of three
exponentials. Each exponential term is equivalent to a chi-square variable with
2 degrees of freedom. Omitting the details of the derivation, we obtain

f A1 (N - p + I)(NA1 )(NP÷1)f,(y) = 11: Al (N -p+2
"(y + N A)(-P÷2) (168)

Detection probability for the adaptive PWF is easily calculated using the above
PDF. We obtain the result

P ,= A , '(1 +.,'

1 Ný., ý(169)

For large N, the expression for detection probability becomes

~~D 1.~x~i (170)

For large N, the covariance estimate used in the adaptive PWF becomes exact
and the algorithm reduces to the ideal PWF. Thus, Equation (170) is the
corresponding PD formula for the PWF.

12.10 PWF DETECTION PERFORMANCE PREDICTIONS

Figure 22 shows PWF detection performance for Gaussian target and
clutter models. The curves shown are for T/C ratios of 0, 3, 6 and 10 dB; for
comparison, the corresponding OPD detection performance curves are also
shown. Rerall that we showed earlier that PWF and OPD performance was
nearly identical for non-Gaussian product-model targets and clutter (Figure 21);
Figure 22 shows that, for Gaussian target and clutter models, the PWF again
performs almost as well as the OPD.

If the clutter polarization covariance is adaptively estimated from local
clutter, using the adaptive PWF, detection performance will depend upon the
accuracy of the covariance estimate. In order to gain insight into the sensitivity
of the adaptive PWF, we evaluated the detection performance of the algorithm
using 16, 32, and 64 complex (HH, HV, and VV) clutter samples to estimate the
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Figure 22. OPD and PWF detection performance versus
target-to-clutter ratio (Gaussian target and clutter models).
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polarization covariance. The detection performance curves for these three
cases are shown in Figure 23. Comparing the results of Figure 23 with the
exactly known case (Figure 22) shows that only a small loss in detection
performance (usually referred to as CFAR loss) is incurred when a reasonable
number of independent clutter samples are used to estimate the polarization
covariance (e.g., 64 samples). When only 16 independent samples were used
to estimate the polarization covarance matrix, the CFAR loss was larger (about
2 dB).

In radar detection it is customary to characterize the performance of an
adaptive CFAR detector (in this case the adaptive PWF) by using a set of ideal,
fixed-threshold detection performance curves plus an additive CFAR loss which
depends upon the number of clutter samples (N) used to estimate the clutter
covariance. We evaluated CFAR loss (versus N) for the adaptive PWF by calcu-
lating the target-to-clutter ratio required to achieve PD = 0.5 with PFA = 10-3 for
two situations, (1) with Ec known exactly, and, (2) with _.c estimated. Figure 24
shows the loss (in dB) versus the number of independent clutter samples used

to estimate 1,. The CFAR loss is approximately 1 dB with N=24 and increases
rapidly when fewer than 2, samples are used. At least 50 independent
samples are required to reduce the CFAR loss to 0.5 dB.
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13.0 SUMMARY AND CONCLUSIONS

This report summarizes a study of target detection, target classification,
and radar imaging algorithms that use polarimetric radar data. A model which
includes the effects of the spatial nonhomogeneity of ground clutter and the
aspect angle variability of targets was developed, and then used to evaluate the
performance of various detection, classification, and imaging algorithms.

Our target detection studies found that the additional information
provided by the full PSM measurement, even when processed in an optimal
fashion, did not aid significantly in target detection. That is, a radar which
transmits and receives a single polarization (e.g., LL or HV) will obtain almost
as good performance as the optimal polarimetric detector (OPD), which
measures the full PSM. Furthermore, to achieve the additional performance
improvement from the OPD, one must have a priori knowledge of the target and
clutter polarization covariances, as well as the target-to-clutter ratio. When
these covariances are not known, a single-polarimetric-channel detector (e.g.,
LL or HV) provides nearly optimal performance. Therefore, independent, multi-
look, single-polarization algorithms appear to be the best approach to target
detection.

Our target detectior studies showed that, when a single polarization was
used, ILL12 (even-bounce) circular polarization provided slightly better per-
formance than IHVI2 or IHHI2 (linear) po',arizations. However, the clutter data
base used in these studies was limited, and further study of this problem using
various types of clutter (for example, snow clutter) will be necessary.

Once a target is detected, information contained in the PSM may be
useful for classifying between target tyDes (e.g., armored target versus truck).
Our preliminary results indicate that, for classification to bp effective, many
independent looks at the target are required and the target-to-clutter ratio must
be fairly high. This area will require further study using a variety of target types.

Another area in need of further investigation is the development of more
realistic statistical target models. Some targets have different polarimetric
properties at different aspect angles. Thus a more realistic statistical target
model would be one which uses different covariance matrices to characterize a
"larget at different aspect angles.

We derived the optimal method of processing the complex HH, HV, and
VV elements of the PSM to minimize speckle in a polarimetric SAR image; the
solution was shown to be the polarimetric whitening filter (PWF). For
homogeneous clutter, this algorithm was shown to reduce the standard
deviation-to-mean ratio by 4.8 dB (relative to that of single-polarimetric-channel
data); this is 1.9 dB better than the span algorithm.

A comparison of the target detection performance of the OPD with PWF,
span, and IHHi 2 detectors showed that the OPD and PWF gave comparable
performance, and were significantly better than the span and IHHI 2 detectors.
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Since the PWF (unlike the OPD) requires only the polarimetric covariance of the
clutter, an adaptive PWF was implemented. This algorithm estimates the
polarization covariance matrix from the local clutter, uses the estimated
covadance to construct the minimum speckle image, and then tests for the
presence of targets. This algorithm was found to produce detection
performance comparable to that of the OPD.
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APPENDIX

This appendix provides the solution for the calculation of the eigenvalues

of the matrix product Z3(Z1'- 2;2'). Equivalently, we may simultaneously
diagonalize the following two matrices:

11'- 12' A (A-1)

x3
1  

- I (A-2)

When this is done, the diagonal elements of the matrix A are the desired
eigenvalues. These eigenvalues are required in the performance evaluation of
the optimal polarimetric detector. In this appendix, we assume the polarimetric
measurement vector to be a real, 6-dimensional zero-mean, Gaussian vector

X = (HH,,HH-, IiVHV,,Q VV,,VVQ)' (A-3)

with real 6 x 6 covariances Z1, 12, Z3 of the form

1 0 0 0 ..jRe(p) -J"Irm(p)"

0 1 0 0 .j'lm(p) 4jRe(p)
,=.11Li 0 0 £ 0 0 0

2 0 0 0 e 0 0

.3-Re(p) .FyIm(p) 0 0 y 0

-P/'Im(p) •/-"Re(p) 0 0 0 r (A-4)

This solution is general in that we have assumed the correlation parameter p, to
be complex. The real 6 x 6 matrix has 3 eigenvalues, each of multiplicity two.
We present the analytical solution for these eigenvalues X1, X2, X3 in the
following FORTRAN subroutine.

97



subroutine eigvals(el,gl,rl,sl,e2,g2,r2,s2,e3,g3,r3,s3)

C------------------------------------------------------------------------------------------------
c

c This program generates the eigenvalues of an input matrix in
c the form (sigma.3)x(sigma.l.inverse - sigma.2.inverse) where
c sigma.l, sigma.2, and sigma.3 are all 6x6 covariance matrices
c whose elements are determined by the parameters contained in
c the input data file. The equations for the eigenvalues were
c obtained using MACSYMA.
C
c------------------------------------------------------------------------------------------------

parameter(inlu-12,outlu-21)

c DATA STRUCTURES
double precision el,e2,gl,g2,sl,s2
double precision 11 •.12,13,14,15,16,lam(3)
double precision al,a2,a3,bl,b2,b3,denl,den2
double precision e3,g3,s3
complex*16 rl,r2,r3

c CHARACTER STRINGS

character*50 infil,filname,gettext

c--------------------------------------------------------------------------------

a1-(gl**0.5)*dreal([l)
bl-(gl**0.5)*dimag(rl)
a2-(g2**0.5)*dreal(r2)
b2-(g2**0.5)*dimag(r2)
a3m(g3**0.5)*dreal(r3)
b3-(g3**0.5)*dimag(r3)

denl-(gl-(bl**2)-(al**2))*sl
den2-(g2-(b2**2)-(a2**2))*s2

x-(gl/denl)-(g2/den2)
y-(a2/den2)-(al/denl)
z-(b2/den2)-(bl/denl)
v-(i/denl)-(l/den2)w-(.I/(el*sl))-(l/(e2*s2))I

c ------ Compute the eigenvalues of the matrix
c (sigma.3) x (sigma.l.inverse - sigma.2.inverse)

ll-(s3*(x-sqrt(g3*(4*z**2+4*y**2-2*v*x)+a3*k2*(4*v*x-4*z**2)+a3*
1 (8*b3*y*z+4*x*y+4*g3*v*y)+b3*(4*x*z+4*g3*v*z)+b3**2*(4*v*x-4*
2 y**2)+x**2+g3**2*v**2))+2*b3*s3*z+2*a3*s3*y+93*s3*v)/2.0

12-(s3*(sqrt(g3*(4*z**2+4*y**2-2*v*x)+a3**2*(4*v*x-4*z**2)+a3*
1 (8*b3*y*z+4*x*y+4*g3*v*y)+b3*(4*x*z+4*g3*v*z)+b3**2*(4*v*x-4*
2 y*.*2)+x**2+g3**2*v**2)+x)+2*b3*s3*z+2*a3*s3*y+g3*s3*v)/2.0

13-e3*s3*w

lam(!)-l!
lam(2) -12
lam(3)-13
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